An example of an odd dimensional positively pinched Riemannian manifold

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The third Betti number of a positively pinched riemannian six manifold

© Annales de l’institut Fourier, 1986, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

An Example of 6-dimensional Compact Generalized Kähler Manifold

We construct a compact 6-dimensional solvmanifold endowed with a non-trivial generalized Kähler structure and which does not admit any Kähler metric.

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Pinched exponential volume growth implies an infinite dimensional isoperimetric inequality

Let G be a graph which satisfies c−1 ar ≤ |B(v, r)| ≤ c ar, for some constants c, a > 1, every vertex v and every radius r. We prove that this implies the isoperimetric inequality |∂A| ≥ C|A|/ log(2 + |A|) for some constant C = C(a, c) and every finite set of vertices A. A graph G = ( V (G), E(G) ) has pinched growth f(r) if there are two constants 0 < c < C < ∞ so that every ball B(v, r) of ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1969

ISSN: 0040-8735

DOI: 10.2748/tmj/1178242898